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In the design of missile control systems, an analysis of the coupled 
frequencies and mode shapes leads t o t h e  study of the generalized eigenvalue 
problem D ( s ) x  = 0 where D ( s )  is  an nxn matrix whose elements are poly- 
liuaiiials in s and x i s  a vector. In this report, we  develop a systematic 
procedure for  the evaluation of s and the corresponding vector x . A 
Fl;iffl" 11-D program f o r  the IBM 1620 computer i s  appended t o  produce the com- 
plete  solution. A numerical example is  provided. 

.J 
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I. IM'RODUCTIOPJ 

I n  the theory of linear vibrations of damped systems, one is  naturally 
led t o  a matrix different ia l  equation of the  form 

6 + B d + C) x ( t )  = b ( t )  
dt2 d t  

where A, B and C are nxn matrices with elements independent of t , and 
x ( t )  and b ( t )  are Ixu column vectors. To compose the solution of (Ll), 
the solutions of the homogeneous system are required. 
proportional t o  est whence we get  the nonlinear eigenvalue equation 

These solutions are 

(As2+Bs+C) x = 0 (1.2 1 

where s is the eigenvalue and x i ts  corresponding eigenvector. In t h i s  
report we develop algorithms t o  f ind s and t he  corresponding x . Equation 
(1.2) c a ~ l  be generalized t o  the form 

D(s)x = 0 (1.3 1 

where D ( s )  is  a nxn matrix whose elements are arbi t rary polynomials i n  s. 
In the analysis of coupled frequencies and mode shapes of space vehicle control 
systems, a system l i k e  (1.3) may arise. Though our ideas for  the solution of 
(1.2) can carry over far t h e  solution of (1.3), our principal concern i n  the 
sequel is  techniques for  the  solution of (1.2). 

11. SEIECTION OF TECHNIQUES 

There are numerous possibi l i t ies  fo r  the solution of (1.2). For 
example, i f  one could hypothesize tha t  the damping i n  each mode is  l ight ,  say 
l e s s  than 10 per cent of cr i t ical ,  then it would appear feasible t o  design an 
i t e r a t ive  procedure based on a perturbation of t he  l inear  system 
(As2+C)x = 0 . Indeed 
i n  the pian of space vehicies, the controi e q a t i o n  can be so riesigneri that ,  
i n  effect, large amounts of damping can be present i n  various modes. There i s  

h e  d i f f icu l ty  is tha t  the  damping may not be s m a l l .  

- 2 -  



yet another difficulty.  
a lgori thm for the  evaluation of s converges, it is  known that  the convergence 
is at least quadratic. 
vergence neighborhood, that is, a neighborhood of the t rue  
the  i te ra t ion  procedure converges. 
is not readily reduced t o  an a pr ior i  form from the u s u d  input data. I tera-  
t i o n  procedures have other disadvantages. For example, only one eigenvalue 
can be found at a time, and each s tep of t h e  i t e r a t ive  procedure requires the 
inversion of an nrm matrix. 

I n  a knwn i t e r a t ive  procedure [l], i f  t h e  suggested 

Further, a theorem i s  available t o  establish a con- 
s within which 

Hawever, the  radius of this neighborhod 

i n  view of the convergence uncertainty and other points mentioned 
above, it appears desirable t o  develop a direct  ( that  is, noniterative) solu- 
t i o n  for the  nonlinear eigenvalue problem. 
the equations which follow, we give a short summary of the  ideas involved. 
Suppose that i n  (1.2), the coefficient of B is replaced by so . Under the 
assumption tha t  A i s  nonsingular, w e  can write 

To f a c i l i t a t e  our understanding of 

where I i s  the ident i ty  matrix. We next seek the characterist ic equations 
corresponding t o  F . Note that t h i s  is not the characterist ic equation f o r  
our original problem (1.2) unless, of course, so is an eigenvalue of (1.2). 
We re turn t o  this point later. 
available t o  evaluate d i rec t ly  the character is t ic  equation f o r  (2.1). 
these can be sensit ive t o  the special pecul iar i t ies  of the  matrices and vectors 
involved. For example, degeneracies can occur when certain quantities required 
for division are null or nearly so. 
equation f o r  (2.1) by a method due t o  k v e r r i e r  as modified by Faddeev [2,3]. 
See Fe t t i s  [4] for an exposition of the  method together w i t h  an example. 
Though t h i s  procedure requires more operations than those known by the  names 
of Krylov, Danilevsky, Samuelson and Bryan, see the references above and also 
Householder [SI, it is u t t e r l y  insensit ive t o  the pecul iar i t ies  j u s t  noted 
since no divisions are required, only multiplication and addition of matrices. 
Frau t h i s  point of view, the method of k v e r r i e r  i s  universal. 

For now we remark t h a t  several procedures are 
Most of 

W e  propose t o  get the character is t ic  

The characterist ic equation for (2.1) can be written i n  the form 

(2.2) 2 b , = l , A = - s  . 
k=O 

- 3 -  
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This last equation can also be used t o  represent t h e  characterist ic equation 
for  (1.2). In this event, it is easy t o  show tha t  
of degree r . That is, we can write 

br is a p o l y n d a l  i n  

(2.3) 

Now for  each selected value of so , w e  compute a value 
$ for (r+l) dis t inc t  values of so , then by use f the Lagrangian in te r -  
polation farmula, we can evaluate the coefficients 4) . As r runs through 
the sequence 
k v e r r i e r  must be repeated (n+l) times corresponding t o  (n+l)  d i s t inc t  values 

br . If we cmpute 

1,2, . ..n , we require (n+l) values of so . Thus, the method of 

of so . 
1% calls for remark that i f  the determinant of (As*+Bs+C) is  

evaluated for  (2n+l) d i s t inc t  values of 
method could be used t o  cmpute the coefficients of the character is t ic  equation. 
In t h i s  event, one could dispense with the developments surrounding (2.1). 
have not experimented with this approach, fo r  in some past considerations we 
have f w d  tha t  round-off errors can seriously affect the accuracy of the poly- 
nomial produced by the  Lagrangian method as applied t o  high degree systems. 
The suggested procedure tends t o  minimize t h i s  difficulty.  

s , then the Lagrangian interpolation 

We 

Once the  characterist ic equation i s  established, its roots are eas i ly  
determined by an i t e ra t ive  method due t o  B a i r s t a w  [6]. 
vectors are then determined by solution of t h e  l inear  equation system (1.2) 
or w e  m a y  use (2.1) with so replaced by the character is t ic  value s . 

The corresponding 

W e  now turn t o  an exposit im of the equations used t o  accomplish the 
various steps required i n  t h e  solution of (1.2). 

111. THE ME!I"OD OF IEVWRIER 

We have the linear s y s t e m  

Fx = AX (3.1) 

- 4 -  
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where i n  the notation of t h e  previous section 

2 (3.2 1 F = A-' ( B 0 + C )  X = -s . 

The characterist ic equation for (3.1) i s  expressed as 

Thus given the matrix F w e  seek the coefficients bk . We first present a 
summary of the procedure. L e t  dij , i, j = lJ2, .,n be the eleneats of a 
matrix D . That is, 

Then by the  t race of I) written (TrD) w e  mean 

Fk ' Sometimes the word "spur" is used instead of trace. W e  define matrices 
$ and SCd-XC'S qk its fOnOWS.  

F2 = El., s, = (TrF2)/2 G2 = 921 - F2 
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W e  shall  prove tha t  

s, = bk, k = 1,2,. ..n . (3.7 1 

Also Gn is a n u l l  matrix. Thus 

This serves as a check on the operations. Of course, i n  practice Gn is no% 
nu l l  i n  view of round-off errors. 
from nu l l i t y  may be taken as a masure of %he cccmdat ion cf raz3-c$f errar .  
If F is  nonsingular, then it follows tha t  

Thus the deviation of the  computed Gn 

(3. 9 1 

If F is singular, then Gn- l  is  the  matrix adjoint t o  matrix F . Gnce 
the eigenvalues are known, the method of Leverrier produces all the  ingredi- 
ents necessary t o  compute the corresponding eigenvectors. . k t  
i = 1,2,...n , be the zeros of v(X) . That is, X i  is an eigenvalue of (3.1). 
Then the corresponding eigenvector, c a l l  it x ( ~ )  , is proportional t o  any 
column of the matrix 

hi , 

r = O  

The proof is as follows. kt 

r=l 

Clearly 

SI = (TrF) . 

- 6 -  
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If ), is an eigenvalue of F then hk is a n  eigenvalue of Fk . So 

sk = ( a F k )  (3.13) 

Now there is a connection between the  Sk's and t h e  %'s known as Newton's 
ident i ty  [7]. It reads 

Thus the computational process is reduced t o  the  evaluation of successive 
powers of the  matrix F . Our proof now proceeds by mathematical induction. 
Obviously bl = (TrF) = ql So assume that q, = b, for r = 1,2, .. .k-1 . 
ble show that qk = bk . BY the a o r i t h  (3.6), w e  have 

so 

= (- )'-'[ ~ ~ - b ~ s ~ - ~ + b ~ s ~ - ~ + .  . . +( - )k-$a-lsl ] 

= kbk (3.16) 

i n  view of (3.12)-(3.14). Thus qk = bk and the  indslction is complete. BY 
t he  Hamilton-Cayley theorem, a matrix satisfies i ts  own characteristc equation. 
That is, see (2.3), 

n 
5" (-)kbn_$Fk = 0 
k=O 

(3.17) 

Now put k = n i n  (3.15) and when t h i s  is combined with (3.17), we get 

- 7 -  
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which i s  the statement (3.8). 

From (3.17), w e  have 

m f (-)"bn-8'l = -bnF -1 
k=l 

If' this is  compared with (3.15) far k = n-1 , w e  get 

which is  the statement (3.9). 

Using (3.10), we have 

and with the aid of (3.6), (3.7) and (3.3), 

(3.18) 

That is, any column u of the  matrix % is the  eigenvector corresponding 
t o  the eigenvalue Ak . 

We remark tha t  i n  terms of our or iginal  problem, see (1.2), w e  do 
so is  an not require ei ther  the eigenvalues or eigenvectors of F unless 

eigenvalue of the s y s t e m  (1.2). We only require the  h ' s  . However, for  
the sake of c l a r i t y  and completeness, we have presented the method of Leverrier 
in i ts  entirety. 
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IV. THI3 LAGFUNGIAN I I ’ Z E Z P O M I N G  POLYN- AND CCMpIE”rI0N 
OF THE SOLUTION 

It is useful t o  review the theoretical  procedure deduced thus far. 
\le begin with 

(As2+Bs+c)x = 0 

or equivalently 

(4.1 1 

We consider the system 

Fx = Ax , h = -s2 , F = A’1(13so+C) (4.3 1 

so t ha t  (4.2) and (4.3) are identical  i f  
for  (4.3) may be written as 

so = s . The characterist ic equation 

It i s  easy t o  show that  the characterist ic equation fo r  (4.1) may be expressed 
as 

where “k is a polynomial i n  s of degree k . Let 

- 3 -  



Clearly 

c (s ) = bk , k = 1,2,.-.n k o  . (4.7 1 

If the analysis which leads t o  (4.4) is repeated for  (k+l) dis t inc t  values of 
6 $s) . 
Since k = 1,2,. . .,n,in all(n+l) d i s t inc t  values of so are required. The 
manner of gett ing the Iagrangian interpolating polynomial follows. kt f ( x )  

, then the Lagrangian interpolation method can be used t o  recover 
? 

be a polynomial i n  x of degree r Suppose 
(r+l) dis t inc t  points Xi , i = 0,1, ., r . tha t  f ( x )  i s  known at the 

Int fr = f(+) Then 

r .  

where a ' indicates t h a t  the factor ( x - 5 )  is  omitted. If 

n n 

i=l k=O 

n-k 
&(Y) = n (Y-y , )  = z (-)kPkY , Po = 0 , 

and 

(4.9 1 

(4.10) 
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I -  
then the pk's are readily evaluated using the  recurrence fornniLa 

(4.11) 

The latter is  the same as (3.14). 

Thus the  coefficients $) are known and the combination (4.5) 
and (4.6) yields the characterist ic equation. 
equation m a y  be found using Bairstow's i t e ra t ion  procedure, see, far example, 
c64- T h i s  technique is  w e l l  known and is  described i n  numerous sources other 
than the one referenced, We dispense with further details, suffice it t o  say 
that it is a generalization of the Newton-Raphson procedure fer a sin@ root 
as it removes quadratic factors from a given polynomial, and so is  e f f ic ien t  
f o r  the recovery of complex zeros. Once the zeros are knuwn, the  correspond- 
ing eigezlvectors are found by solving l inear  systems of equations of (4.1) 
with one equation omitted. 

The roots of the characterist ic 

V. RE~CMt4ENDATIQNs FCW FIITURF: RESEARCH 

In  this section we l i s t  some areas for future research bearing on 
t he  problem of finding the eigenvalues and eigenvectors of matrices whose ele- 
ments are not l inear  functions of the variable. The present report gives a 
procedure far s o h - b g  t h e  problem i f  the elements are at  most quadratic. A 
natural  research problem i s  the extension of present techniques and development 
of new procedures t o  solve the problem when the matrix elements are arbi t rary 
polynomials i n  the variable. T h i s  i s  important fo r  the applications since it 
is known t h a t  the control equation can introduce polynomials of high order. 

As remarked i n  the main body of t h i s  report, the  algorithms now 
employed are no$ necessarily the most econanical from the  point of view of 
machine computation. On the other hand, w e  noted tha t  the techniques used 
fo r  developing the characterist ic equation of (2.1) may be described as uni- 
v e r s a l  in t h e  sense tha t  no divisions are required. 
d i f f i cu l t i e s  inherent i n  methods which require division by pivotal  elements 
are eliminated. Even so, we believe tha t  studies should be m a d e  with other 
procedures for  evaluation of the character is t ic  equation. Another possible 
economy wGuld ar ise  if  the characterist ic equation could be recovered by 
evaluation of the  determinant of 
d i s t inc t  values of s followed by use of the Lagrangian interpolation 

Thus, the usual round-off 

D ( s  >; see (1=3 )) for a sr?ff5cfe-?t mz~.h~r of 

- l l -  
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I -  formula. 
Leverrier. 

This procedure i f  successful w o u l d  eliminate need far the method of 
This aspect should also be investigated. 

Often i n  the analysis of a physical system, one i s  interested i n  the 
e f fec t  on s t a b i l i t y  produced by variation of a parameter. 
parameter change is not too great, it would seem t ha t  once the eigezlvahes are 
knm for a given state,  the carresponding eigenvalues for a s l igh t ly  changed 
s t a t e  could be quickly determined by a perturbation process. Thus, perturba- 
tion, and i n  general i t e ra t ive  techniques for the solution of the general 
problem, should be investigated. 

Provided t h a t  the 

Another area of interest  is  the application of root-locus methods 
on control system design to analyze system s t a b i l i t y  when certain system 
parameters are permitted t o  vaxy. 

- 1 2 -  
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In this Appendix w e  wesent a f lm chart for  the  evaluation of the 
as described i n  

I 

eigenvalues and eigenvectors for the  system (&+BS+C)x = 0 
the  main body of the report. 
FQflTRAN 11-D programs and subroutines writ ten for  the IBM 1620 computer. 

Also included is a description of the  various 

- 14 - 



l -  
1 -  

- 15 - 



Compute 

A - 1  

1 

Evaluate 

s , A - ~ B ~  

Evaluate 

A-lC 

C a l l  M B C Q  
Compute Coef - 
f i c i en t s  of 
Charac. Eq. 7 
C a l l  Ma06 

Express Char- 
a c t e r i s t i c  Equa- 
t ions  as  a Single 

Q-=O There More 

v 

Evaluate 

~ -1~1  

Generate 
Lagrangian 

nterpolation 

C mput e 
Corresponding 

* The matrix B used i n  the notation fo r  the  general program f l o w  chart  
is  now named Bl, as the designator B is used i n  another connection 
i n  subprogram MCSCE. 
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Program M a 0 1  is the mainline program which ca l l s  several subprograms 
and links with mainline program MmOIA t o  compute the  eigenvalues and the 
corresponding eigenvectors of agiven matrix whose elements are polynamials 
of de- no greater than two .  

Restrictions or limitations : 

1. The Input matrices must be square. Also, the  matrix whose ele- 
ments are coefficients of S2 must be nonsingular. See the note belw. 

2. The input coefficients of the polynomials must be r e a l  rmmbers. 

3. The nunher of values of So should equal the size of the input 
square matrices plus one. 

4. Compatibility of dimensions is  necessary between the mainline 
program and its subprograms and linked programs. 

5. SUBRmIRE POLYSV w i l l  fail i f  the polynomial contains a repeated 
quadratic factar. However, the  poss ib i l i ty  of this happening is quite rare. 

(AS2+BS+C)x = 0 

may be also written as 

n t 
j=l 

In missile systems, one of the modes at l ea s t  i s  a r ig id  body mode. Suppose 
xl 
form t ha t  ail = 0 for  i = 1,2,. ..n . In this event, t he  raw data must be 
conditioned before using program Ma01 as we require 

prepare the 4at.a in_ si-irh_ a sitiiation; y c ~ l m e  )r, by ;s nev rnnrr7inat.e 

is  the r ig id  body coordinate. Then original data might be given i n  such a 

A t o  be nonsingular. 

l. 
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yl/S . Then the coefficient of (yl/S) has the form (bil$+cilS) . Other 
r igid body modes, if present, are treated in a similar fashion. The condi- 
tioned data are now i n  a suitable form t o  get t he  eigenvalues using t he  above 
program. However, once an eigenvalue S is  known, subrautines M0308 and Ma09 
produce the corresponding vector x Thus the input data used i n  the latter 
rnr t iaes  are the  original data, not the conditioned data employed t o  get t h e  
eigenvalue. 

Card 
Columns 

1-3 

4 -6 

Data Definition of Data - 
m Size of input 

square matrix 

Lz IZ is a control code. If LZ > 0 , program c m p t e s  
eigenvectors corresponding t o  each eigenvalue. 
LZ 5; 0 ,  program cmputes eigenvalues but no eigen- 
vectors 

If 

7 -9 NSO N u m b e r  of values fo r  So t o  be used 

NN, LZ, NSO are f i x e d  point data; r igh t  j u s t i fy  these data i n  t h e i r  
r e s p c t i v e  card columns. 

FCIRMAT STmMENT: 201 FORMAT (3 F 25.0) 

Card 
Columns Data Definition of Data 

1-25 A ( 1 , J )  A i s  a matrix whose elements are coefficients of S 2 ;  

- 

26-50 read first column of data, 'chen tine secouii colui~iii, etc. 

51-75 
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Example of Data on C a r d s  When A is a 4 x 4 Matrix 

. 

Ist Card 

2nd Card 

3rd Caxd 

C a d  
Columns 

1-25 
26-50 
51-75 

1st Card 
2nd Card 
3rd Card 

Card 
Columns 

1-25 
26-50 
51- 75 

F(.RMA!T STATEMENT: 201 FORMAT (3F25.0) 

Data Definition of Data - 
Bl(1,l) I31 = matrix whose elements are coefficients of s ; 

read lst column first, then 2nd column, etc. 

If the input matrix B1 is a 4 x 4 matrix 

Card COlUmnS 1-25 26-50 51-75 

READ STATEMEW: READ 201 ( ( C ( I , J ) ,  I = 1, NES), J = 1, NN) 

FQRMRll STAI'EMEmC: 2Q1 FCRMKT (3 F 25.0) 

- Data Definition of Data 

C ( 1 , J )  C = matrix whose elements are independent of S 
Read 1st column first, then 2nd column, etc. 

- 19 - 



If the input matrix = C(I , J ) ,  I = J = 4 the data cards should be 
read : 

1st Card 
2nd Card 
3rd Card 

Caxd 
Columns 

1-25 

26-50 - Card Columns 1-25 - 

FWMAT SMl!EMLNT: 2Ce 3'- (F 25.0) 

51-75 - 

Data - Definition of Data 

ss SS = So . Note: There should be as many cards 
containing values of SS as the  value of NSO i n  the  
first card of the input data deck. 

T h i s  subroutine solves far the  inverse of a m a t r i x  using a modified 
Gaussian method. 

Definitions of the variables in the  argument l i s t  

A ( I , J ) ,  I, J = 1,2,...NA;= coefficient matrix 

Bl(I,J), I,J = 1,2,...NA;= i n i t i a l l y  t h i s  is  a uni t  matrix; a f te r  execution 
of subroutine -,this contains the inverse of 
the coefficient matrix A(1,  J)  

NA = dimension of the square matrix A(1 ,J )  

DET = determinant of A ( 1 , J )  
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SUBRCIjTINE MCOM 

This subroutine i s  used t o  solve for  the coefficients of the charac- 
t e r i s t ic  equation corresponding t o  each value of So. 

Definitions of t h e  vazisbles i n  the - w e n t  l i s t  

NN = dimension of the square matrix 

MA = 1,2,..., m+1 

M = 1,2, ..., NN 
A ( I , J ) ,  I, J = l , 2 j o . o j ~ ;  = coefficient matrix formed i n  the mainline program 

AA(1, J), I, J = 1,2, . .,NN; = name of the intermediate matrices used i n  deter- 
mining the coefficients of the character is t ic  
equation 

BB(IjJ) ,  I = 1,2, . . .MTJ+1, J = 1,2, . .,NN; = coefficients of the characterist ic 
equation of the form 

SUBPROGRAM Ma05 

An - blhn-l + + . . . + ( -)nbn = 0 . 

T h i s  subroutine uses the Lagrangian interpolation method t o  in te r -  
polate between the coefficients of the characteris i equations corresponding 
t o  the  various So's . The results w i l l  be the gi t J 5  's as sham below: 
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! -  

SuBROU2INE Ma05 (B, I?X, SO, G, NO, JB) 

I -  

, 
I -  

Definitions of the variables i n  the argument l i s t  

B( I , J ) ,  I = 1,2,...NSO, J = 1,2,...I?S0-1;= coefficients of the characterist ic 
equations (corresponding t o  each 
So) computed i n  subprogram Ma@ 

M I = m + 1  

SO(I j, I = 1,2,. . .NSO; = so values 

G ( J , I ) ,  J =' 1,2,. . .NSO-l, I = 1,2,. . .NSO; = interpolated Coefficients gi (j 1 

N O = N N + l  

This subprogram reads the  output coefficients (pi' )'s ) previously 
computed in subprogram MQ3@, se ts  
the  desired characterist ic equation. 

So = S , and canbines l i ke  terms t o  form 

SUHRCVTINEM0306 (NN, G1, NO, JB, 142, mV) 

Definitions of t he  variables i n  t h e  argument l i s t  

NN = dimension of the input square matrices 

G l ( J , I ) ,  J = 1,2,. . .NSO-l, I = 1,2,. . .NSO; = interpolated coefficients (giJ )Is) 

N O = M M + l  

computed i n  subprogram M03E 

JB = NN 

PN(1) where I = 1,2,. . .,1@+1;= coefficients of t he  desired characterist ic 
e quat ion 
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SUBROUTINE POLYSV 

This subprogram uses Bairstow's method t o  calculate the roots of t h e  
characterist ic polynomial. Zero roots are au tmat ica l ly  renoved. The program 
w i l l  f a i l  i f  the  polynomial contains a repeated quadratic factor. 

SUBRcwTm POLYSV (I?, PN, ZRR, ZRB, ZRC, JR, J C )  

Definitions of the variables in the  argument list 

N = order of t he  characterist ic polynomial 

PN(I), I = 1,2, . . .N+1; = coefficients of the  characterist ic polpomial 

ZRR(I), I = 1,2, ...JR; = r e d  roots 

ZRB(I), I = 1,2, . .. J C ;  = real parts of the complex roots 

ZRC(I), I = 1,2, . . . J C ;  = imaginary par ts  of the complex roots 

JR = number of real roots 

J C  = number of complex roots 

Definitions of the control values i n  subprogram POLYSV 

= the number which controls the accuracy t o  which the coefficients of the  
quadratic factors are found. When the number used is  
i t e r a t e s  for the coefficients of the quadratic factors are accepted 
only when they agree with t he  i-1st iterates t o  n 

, the  ith 

digi ts .  

TST3D = control number which prevents overflow due t o  multiplication during 
i te ra t ion  for the  coefficients of the  quadratic factors. 

TSnD = number w h i c h  controls the number of significant d ig i t s  obtained from 
the  square roat  routine and is  set equal t o  Id'. 
are two consecutive i te ra tes  of the  square root of A2 

If and pi 
and 

9 
i s  sat isf ied,  then is  accepted as the square root of A" and is correct 
up t o  the kth digi t .  
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! -  

I -  

T1sTU) = number which se t s  the decimal point of t h e  i t e r a t e s  for  the coeffi- 
cients of the  quadratic factors t o  t h e  l e f t  of the digits.  T h i s  is  
accomplished by successive d t i p l i c a t i o n  of the iterates by 0.1. 
The value of t h i s  number i s  always 0.1. 

Scale = scale factor, here we used 1.0. 

Additional input (optional): If it is desired t o  use different  values (other 
than those the  program assigns) for the  coefficients of the trial 
quadratic, f ( s )  = sc + b s + cn, enter bn , cn an6 n where n I s  
a quadratic code number. 

n 

n 

Sense switch sett ings:  Set a l l  sense switches off. If the optional input 
i s  used, set sense switch one on. 

Sense switch two on instructs the cmputer t o  pr int  the coefficients 
of the computed q-&atic factors. 

Output: The eigenvalues of the characterist ic polynomial are printed. The 
real eigenvaues appear first. Each printed eigenvalue is of the 
form xi or xJ, yj where xi is  a real root and xj t Y j  cor- 
responds t o  the canplex eigenvalue x3 2 iy3 . 

T h i s  program l i nks  w i t h  program Ma01 and becomes the mainline pro- 
gram t o  c a l l  subprograms i n  order t o  compute the eigenvectors corresponding t o  
each of t he  eigenvalues computed i n  program 140301. 

Program MO3OIA i s  linked t o  M a 0 1  through t h i s  common statement: 

C W C X l  NN, JR, JC, ZRR, ZEtB, ZRC 

Definitions of the  variables in common 

NN = dimension of input matrix 

JR = number of eigenvalues which are r e a l  numbers 

J C  = number of eigenvalues which are complex numbers 

ZRR(I), I = 1,2,...~~; = real eigenvalues 
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mB(I), I = 1,2,. , J C ;  = real parts of the  complex eigenvalues 

ZRC(I) ,  I = 1,2, . .JC; = imaginary par ts  of the complex eigenvalues 

Output: The eigenvectors Corresponding t o  each eigenvalue is printed in the 
f o m  

1 

2 

3 

. 

where the 5 ' s  are the real parts and the  yils are the imaginary parts. If 
the eigenvalue is  real the yi's w i l l  all be printed as zero, 

Al = matrix whose elements are coefficients of S2 

Bl = m a t r i x  whose elements are coefficients of S 

C = m a t r i x  whose elements are coefficents independent of S 

NU = NN = dimension of square matrix 

R e a d  these data exactly as the  i n i t i a l  matrix data were read. 
Matrices Al, B1, and C are coefficients of t h e  given quadratic polynomial 
elemexits. 

Note: See the note fo l lowing  res t r ic t ion  4 i n  t h e  description of 
Program Ma301. 
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This subprogram assembles data for execution of subprogram MCEO9, 
and calls subprogram M0309 which solves for  the eigenvectors corresponding t o  
each of the eigenvalues. 

SUBFROGRAM M0308 (W, SI, NU, Al, Bl, C )  

Definitions of the variables i n  the argument l i s t  

SR = real  part  of a real or complex eigenvalue 

SI = imaginary par t  of a complex eigenvalue 

NU = dimension of the input square matrices 

Al(I,J), I,J = 1,2, ...NU; matrix whose elements are coefficients of 9 i n  
the given quadratic polynomials. 

Bl(I,J), I,J = 1,2,...NU; matrix whose elements are coefficients of S i n  the  
given quadratic polynomials. 

C ( I , J ) ,  I,J = 1,2,...NU; matrix whose elements are constants i n  the given 
quadratic polynomials. 

This subprogram ut i l izes  the  Crout reduction method t o  obtain the 
eigenvectors corresponding t o  each of the eigenvalues. 

SUBPRWAM Ma09 (AR, AC, C1, CC, XR, XI ,  ruA, DETR, D E 2 I )  

Definitions of the  variables i n  the argument l i s t  

A R ( I , J ) ,  I,J = 1,2, . .*NU-l; real coefficients of a matrix 

Cl(I), I = 1,2,. ..NU-l; real  parts of the coefficients on the r igh t  side of the  
equation Ax = c 

C C ( I ) ,  I = 1,2,...W-l; imaginary par ts  of the coefficients on the r igh t  side 
of the equation Ax = c 

X R ( I ) ,  I = 1,2,. . .NU; r e a l  pa r t s  of the entr ies  i n  the solution eigenvectors 

X I ( I ) ,  I = 1,2,.,.NU; imaginary parts of the  entries i n  the solution 
eigenvectors 
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PKYSICAL -(=E OF INPUT DATA DECK 

C matrix needed t o  
compute eigenvectors 

B1 matrix needed t o  
cmpute  eigenvectors 

Al matrix needed t o  compute 
eigenvectors 

NSO cards wi th  SS values, follaw 
card containing last element 
of C matrix 

Remaining C matrix 

containing last  element of matrix 
lst card of C - m a t r i x  folluws card 

Remaining Bl matrix 

1st card of B1 matrix following card 
containing last  element of A matrix 

Remaining A matrix 

2nd card of deck, first card of matrix A 
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In t he  sequel, we list the FOR!!XAN 11-D program described in 
Appendix A. 

I -  
, -  
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C PROGRAM H0301 
C COMPUTES THE E I G E N V A L U E S  AND E 1  GENVECTORS FOR 
C ( A S ~ + B S + C ) X = O T W H E N  S I S  COMPLEX 

D I M E N S I O N  

COMMON N N T J R T J C T Z R R T Z R B T Z R C  

A (  494) T A 1  (4, 4) 9 81 (494) ,c( 4 ~ 4 )  ,AA (494) T A C  ( 4 ~ 4 )  T A B ( 4 r  4) 9 

1 A B  so (494 T 66 5 T 4) T so ( 5 G (  4, 5 9 PN(  9) T ZRR 40 9 Z R B  ( 2 0  ) T ZRC ( 20 

100 READ ~ O O T ~ N T L Z T N S O  
NN=ABSF(NN)  

C A(NN,NN) = M A T R I X  WHOSE ELEMENTS ARE C O E F F I C I E N T S  OF S SQUAREDt 
C Bl(NN9NN) = M A T R I X  WHOSE ELEMENTS ARE C O E F F I C I E N T S  OF St 
C C ( N N 9 N N )  = M A T R I X  WHOSE ELEMENTS ARE CONSTANTS. 

READ 20 11 ( ( A (  I T J T I t NN T J= 1.9 NN) 
READ ~ ~ ~ T ( ( ~ ~ ( I T J ) T I = ~ ~ N N ) T J = ~ T N N )  
READ T J=l, "1 
DO 101 I t l v N N  
DO 101 J=l,NN 
I F  (1-J) 103, 102, 103 

102 A A ( I , J ) = l . O  
GO T O  101 

103 A A ( I T J ) = O . O  
101 A ~ ( I T J ) = A ( I T J )  

201, ( ( c  ( 1 T J)  T I s 1  T 

C COMPUTES I N V E R S E  M A T R I X  ( M O D I F I E D  G A U S S I A N  METHOD) 
C A ( I 9 J )  X X ( J ) = A A ( I , J )  
C A = C O E F F I C I E N T  M A T R I X * A A = R I G H T  HAND S I D E  VECTOR OR MATRIX," I S  
C S I Z E  OF THE SQUARE M A T R I X  A,NN I S  1 IF AA I S  A VECTOR, 
C DET=VALUE OF DETERMINANT A-MATRIXvAFTER E X E C U T I O N  

C A L L  ALGEQ ( A T  AA 9 NNt NN 9 DET 1 
DO 104 I - l ~ f f N  
DO 104 3Sl tNN 
A C (  I T  J)=OoO 
A B f I t J ) = O . O  
DO 104 K=l rNN 
AC(I~J)=AA(I,K)*C(K,J)+AC(ITJ) 
A B ( I , J ) = A A (  I T K ) * B L ( K T  J ) + A 8 (  IT J) 104 

106 READ 2 0 2 ~ S S  
MA=O 

MA=MA+l  
S O I M A ) = S S  
DO 105 I = l r N N  
DO 105 J= lpNN 

105 ABS04  I t  J ) = S S + A B (  I T J 1 
D O  107 I=l,NN 
DO 107 J=l rNN 
A ( I p J ) = O o O  
A A ( I p J ) = O . O  
A(IIJ)~ABSO(ITJ)+AC(ITJ) 

107 A A ( I , J ) = A ( I T J )  
M =O 

C O B T A I N S  C O E F F I C I E N T S  O F  THE C H A R A C T E R I S T I C  E Q U A T I O N  
122 C A L L  M O ~ O ~ ( A ~ A A ~ B B I N N T M , M A )  

I F ( N S O - M A )  1239 1239 106 
L AGRANGI AN I N T E R P O L A T I O N  C 

L L ~  LnLL ~ I U S U ~  \ P D ~ W A )  S O T G T N O T J B )  
C C O M B I N E S  L I K E  TERMS T S = S  NAUGHT 

C A L L  M 0 3 0 6  (NN TGTNOT J B T M ~ T  PN) 

LI- r . 1  I un -nc  a n n  
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C COMPUTES POLYNOMIAL ROOTS (BAIRSTOWTS METHOD) 
CALL POLYSV(H~TPNTZRRTZRBTZRCTJRTJC) 
I F ~ L Z ~ 1 0 ~ ~ 1 0 0 ~ 1 4 9  

149 CALL LINK(M0301A) 
200 FORMAT ( 31  2 1 

C IF LZ I S  GREATER THAN ZERO COMPUTE EIGENVECTORS 

201 FORMAT(3F25oO) 
202  FORMAT ( F 2 5  00 1 

END 

SUBROUTINE M O 3 O 2 (  ATAATBBTNNTMTMA) 
C SUBROUTINE USED I N  OBTAINING THE COEFFICIENTS OF THE 
C CHARACTERISTIC EQUATION 

D IHENSION A (  4r 4) r A A (  4.4) 9 ASB ( 4 9  4)  r BB ( 5 94) 
101 M=M+l 

BB (MAIM )=000 
DO 102 I=l ,NN 
BB ( M A t M  ) = A A (  1 9  I )+BB( HAT M 1 

BB4MA.H )=BB( M A t M  1 / D I  V 
107 DO 103 I - l r N N  

DO 103 J = l * N N  
ASQ( IT J ) = O o O  
DO 103 K = l * N N  

DO 104 I = l r N N  
DO 104 J = l r N N  

104 A A (  I, J 
106 I F  (M-NN ) l O l ~  1059 105 
105 RETURN 

END 

1 0 2  
DIV=M 

103 A S Q ( I T J ) = A ( I t K ) ~ A A ( K I J ) + A S Q ( I T J )  

BB( HATH)+A( I T J 1 ) -ASQ(  I T J) 

- 30 - 



, -  

1 -  

DET=-DET 
2290 X=A( JT J) 

2300 A ( J ~ I ) = A ( J T I ) / X  

2310 B ~ ~ J ~ I ) = B L ~ J T I ) / X  

DO 2300 I = J t N A  

DO 2310 I = l v # A  

DET=DET*X 
I F (  J - N A ) 2 3 2 0 q 2 4 0 0 , 2 4 0 0  

DO 2100 I=L,NA 
X=Af  I T 3 1 
DO 2340 K=L,NA 

DO 2100 K S l t M A  

2320 L = J + l  

2340 A ( I T K ) ~ A ( I , K ) - X + A ( J T K )  

2100 Bl(IiK)=B1(ITK)-X*B1(JTK) 
2400 DO 2600 K K = l * M A  

DO 2600 1=2,NA 
K = N A + l - I  
J=K+1 
DO 2600 L=JTNA 

2600 B l ( K T K K ) = B l ( K , K K ) - A ( K l i ) + a l ( L I K K )  
GO TO 2950 

P R I N T  2999 
2900 DETzOo 

2999 FORMAT(30H A MATRIX I N  ALGEQ I S  S INGULAR)  
2950 RETURN 

END 

SUBROUTINE M O 3 0 6  ( NNtG 1 T NO, J B T  lrr129 PN) 
C FOR CASE 5 NAUGHT = S 
c COMBINES L I K E  TERMS TO FORM THE C H A R A C T E R I S T I C  EQUATION 

D I M E N S I O N  G ~ ( ~ T S ) T G ~ ( ~ T ~ )  9 P N t  9 )  
320 DO 3 2 1  K = l , J B  

DO 321 J = l r N O  
321 G 2 ( K * J ) = O i O  

DO 322 K = l r J B  
K l = K + l  
DO 322 J s l ~ K l  
K 2=K 1- J+ 1 

322 62 ( K 9 J 1 =G 1 ( K T  K 2  
POLIO.0 
M2=2*NN 
PN (M2+ 11 = 1 0  0 
DO 300 K ~ l r M 2  
M1=?42-K+1 
IF ( M 1 )  310 T 310 9 311 

3 11 1 F 4 K -NO 30 1 I 30 1 302 
302 L=L+l 

LL=O 
60 TO 303 

301 KK=K 
1 - 1  
L'L 

303 DO 304 J ~ L T K K  
I F  f J-JB) 30% 30% 306 
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309 I F  ( L o l l  305 T 30% 308 

K l = K  K-LL + 1 
GO TO 304 

305 K l = K K - J + l  
304 POL=G2(  J T K I ) + P O L  
306 P N ( M l ) = P O L  

308 LL=LL+l 

300 POL=OoO 
C P N ( K  I T S  ARE THE C O E F F I C I E N T S  OF THE C H A R A C T E R I S T I C  E Q U A T I O N  
C PN( 1) I S  THE CONSTANT TERM 

I F  ( ABSF ( P N (  1 1 1-0 1 E - 0 8  13239 3239 310 
323 00 324 K t l r M 2  

324 C O N T I N U E  
PN(K ) = P N ( K + l )  

M2-nz-1 
RETURN 

310 M4=M2+1 
RETURN 
END 

C 

10 1 
100 

102 

57  
5 8  

5 9  

2 

SUBROUTINE 
ZEROS OF P O L Y N O M I A L S  
D I M E N S I O N  
NQ=O 
E R R D z l o  E - 1  3 
T S T 3 0 = 1 o  E+O6 
T S T 2 0 = 1 o E + 1 5  
TST lo=. 1 
S C A L E = l o  
I F t S E N S E  SWITCH 3 ) l O l t l O O  
READ 999,ERRDv TST~DITSTZDT T S T l D w  S C A L E  

P O L Y S V ( N T P N V Z R R  TZRBTZRCI J R T  J C  1 

P N ( ~ ) T  B ( ~ O ) T G ( ~ O )  r Z R B (  2 O ) t Z R C ( Z O )  v Z R R ( 4 0 )  

LP=N+l 
ZPLP=PN ( L P  1 
D E L T = l o / P N (  L P )  
00 102 J = l , L P  
P N ( J ) = P N ( J ) + D E L T  
J R = l  
J C - 1  
I F  ( P N (  1) m 5 8 r 2  
L P=N 
N=N-1 

J R = J R + l  

PN(  J)=PN( J+1) 

GO TO 57  

Z R R I  J R  )=oO 

DO 59  J - l v L P  

PN ( L P+ 1 1 = 00 

B ( N + l ) = o O  
B ( N ) = o O  
B ( N - l ) = l o  
G t N - l ) = o O  
G ( N - Z l = o O  
CA=oO 
D A z o O  
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I -  

20 
21 

3 

4 

5 

6 
7 

120 

1 2 1  
122 
123 

140 
150 

44 
45 

60 
61 
62 
50 
54 

55 
56 

23 
0 
9 
24 
25 

10 

71 

- _  
( 0  

I F t S E N S E  SWITCH 1 1 2 0 9 2 1  
READ 996,CAvOA 
RUBZOO 
D B = * O  
NQ=NQ+l 
NPSN-1  
DO 4 K z Z w N P  
M-N-K 
B ( M  )=PN ( M + 2 )  -8 ( M+2 1 *DA-B( M+ 1) *CA 
I F ( N - 3 )  1 7 9 7 9 5  
DO 6 K = 3 9 N P  
M =N-K 
G 4 U 138 ( M+ 2 1 -G ( M+ 1 ) +CA-G ( M+ 2 1 +DA 
G A 3 8 ( 2 ) - G ( l ) ~ C A - G 1 2 ) * D A  
GB=BI l ! -GA*CA-GI l ) *DA 
Rl=PN(2)-6(2)+DA-B(l)*CA 
RO=PN( l ) - B ( l ) + D A  

XX=GB 
GO TO 122 
XX=GA 
I F ( T S T 3 0 - X X ) 1 2 3 , 1 4 0 ~ 1 ~  
XX=l./XX 
GO TO 150 
xx=1. 
DELTA=GB+XX* ( B (  1) -G ( 1 )+DA 1 +GA*XX*GA*DA 
IF ( D E L T A 1 4 5 9 4 4 9 4 5  
DELTA= 10 
CA=CA+( 4 B( 1) -G ( 1 )*DA)*XX*R l-GA*XX*RO) /DELTA 
D A=D A+ ( G A+XX *R 1+ DA+G B* XX*RO 1 /DELTA 
E RR 830 A-D B 
ERR A=C A-RUB 
RUB=C A 
DB=DA 

I F ( G A - G 8 1 1 2 0 ~ 1 2 1 , 1 2 1  

IF ( E R R A ) 6 0 9 6 1 , 6 1  
ERR A=-ERRA 
I F  ( ERR8 )62  9 50 9 50 
E RR 8s-E RR B 
IF ( 1o-ERRA 1 5 4 9  55955 
ERR A=€ RR A+TS T 1 0  
GO TO SO 

ERRB=ERRB*TST lD  
GO TO 55 

IF( l . -ERRB)56,23,23 

I F ( E R R D - E R R A ) 3 9 8 9 8  
I f ( E RRD-ERR B 1 3 9 9 9 9  

I F t S E N S E  SWITCH 2 1 2 4 9 2 5  
P R I N T  9 9 5 9 N Q r C A 9 D A  
RE ST t -C  A* 5 
SURDoCA*CA-DA*4. 
IF  (SURD 1 10 9 1 1 9  12  
BURDz-SURD 
x i s i o  
X2=.5*(X l + B U R D / X l )  
T E  ST=TST2D+ ( X 2 - X l )  / X  2 
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1 
k 
c 

L . 

I 

~~ 

72 
73 
74 

75 

81  

11 

12 

82 

13 

14 
15 

18 

19 

16 

17 

105 

109 
103 
106 
107 

110 
104 
108 

994 
995 

en- 
773 

I F ( T E S T ) 7 2 9 7 3 , 7 3  
T E ST=-TE S T 
I F  ( 1 e - T E S T  1749 75 975 
X l = X 2  
GO T O  71 
BURD=X2 
I F  4 SURD I 8 1  9 82982 
SURD=BURD+*5 
ZRB ( J C  )=REST 
ZRC( J C ) = S U R D  
J C = J C + l  
GO TO 13  
ZRR 4 J R  )=REST 
ZRR( J R + l ) = R E S T  
J R = J R + 2  
GO TO 13 
BURD=SURD 
GO TO 70 

Z R R I  JR)=REST+SURD 
Z W R C J R + I l = R E S T - S U R D  
J R = J R + 2  
N=N-2 
IF(N-l)17,16,14 
I F  ( N - 2  1 15 9 15 9 18 

SURD=BURD*o5 

CA=B( 2 )  
DA=B(  1) 
GO T O  9 
N P = N + l  
DO 19 I = l v N P  
P N (  I )=B(  I) 
60 TO 2 
S=-B ( 1 1 / B  ( 2 1 
ZRR ( JR 1 = S  
J R = J R + l  
JC = JC - 1 
J R S J R - 1  
P R I N T  993 
I F  ( J K  1 106 9 106 9 105 
DO 103 I = l r J R  

I F  4 SENSE S W I T C H  4) 1099 103 
PUNCH 9 9 4 9 Z R R t  J) 
P R I N T  9 9 4 , Z R R ( J )  
I F  ( JC 11089 108 9 107 
DO 104 J = l , J C  

Z R R ( J ) = Z R R (  J ) * S C A L E  

Z R B ( J ) = Z R B (  J ) * S C A L E  
ZRC 4 J ) = Z R C  ( J ) + S C A L E  
I F ( S E N S E  S W I T C H  4)110,104 
PUNCH 9 9 4 , Z R B ( J ) v Z R C ( J )  
P R I N T  9 9 4 , Z R B ( J )  r Z R C ( J )  
RETURN 
FOREAT : /;:BH:THE EIGEMVALUES! 
F O R M A T ( / 2 F 3 0 o 2 0 )  
F O R H A T ( / 1 5 H O F O R  QUADRATIC 139/10H S++2 + F l l o 4 , S H  S + F 1 1 0 4 )  
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996 FORMA7 ( 2 F L O )  
999 FORMAf(3E9.0~2F5ml) 

END 

C 

100 

112 

101 

106 

107 

120 
108 
103 

109 

116 
102 

104 

105 

113 

ii4 
11 0 
115 . 
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4 

117 CONTINUE 
RETURN 
E NO 

I -  

SUBROUTINE M0308 ( SR 9 SI? NU, A 1  9 B1, C ) 
C SOLVES THE SYSTEM t ASZ+BS+C) X=O,OR EX=O,FOR COMPLEX NUMBERS 

D I M E N S I O N  A l ( 4 9 4 )  981(494)  , C ( 4 9 4 )  .E (494)  EC (494 9 C 1 ( 4 )  TCC ( 4  ,XR ( 4 )  9 

1x1  ( 4 )  p A R ( 3 9  3 )  ,AC( 39 3) 
SR2=SR+SR-SI *S I 
S 12= SR*S I +S I *SR 
DO 102 J=l,NU 
DO 102 I S l r N U  
E 4 1 9  J ) = A l (  1 9  J )*SSR2+Bl( I 9 J)+SR+C( I 9 J) 

102 E C ( I , J ) = A l (  I 9 J ) * S I 2 + B 1 (  I,J)*SI 
C FIND SMALLEST ELEMENT 

I F ( S I ) 1 6 1 9  1629 161 
162 DO 163 K s l r N U  
163 XR(K l = E ( K t K )  

GO TO 164 
161 DO 160 K=l,NU 

ARG=( E ( K9 K )*E ( K, K 1 +EC( K, K) *EC ( K, K 1 1 
160 XR(K)=SQRTF(ARG)  
164 K 1 = 1  
105 TEST=XR(  K 1 )  

DO 111 J= l rNU 
IF( J - K l )  1429 1 1 1 9  142 

142 I F ( X R ( J ) ) 1 4 3 9 1 4 4 9 1 4 5  
143 I F ( T E S T ) l 4 6 ~ 1 5 0 ~ 1 5 0  
146 I F  (TEST-XR ( J )  1 1 1 1 9  1 1 1 9  150 
144 I F ( T E S T )  1 l l r l 1 1 ~  150 
145 IF ( T E S T  1 11 1 9 1 1  1 9  147 
147 I F ( T E S T - X R (  J) ~ 1 1 1 ~ 1 1 1 ~ 1 5 0  
150 K l = J  

111 C O N T I N U E  
GO TO 105 

C NEGLECT K-TH EQUATION 
NWZNU-1 
DO 115 I = l r N W  

I F  ( K  1-1 111791179 116 
I K = I  

111 I K = I + l  
116 DO 115 J=lrNW 

J K = J  
I F ( K 1 - J )  1199 1199118 

A R (  1 9  J ) = E (  I K 9  J K )  
AC ( I 9 J 1 =EC 4 I K 9 JK ) 

DO 120 K = l i N W  

IF ( K  1-K 1 121 9 12  19165 
A C A  nn-NTa 
165 C 1 ( K )=-E ( KA9 K 1 1 
120 C C ( K ) = - E C ( K A , K l )  

119 J K = J + l  
118 

115 CONTINUE 

K A=K 

* -s* u . - u * .  
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C A L L  M 0 3 0 9 (  A R T A C T C L ~ C C T  XR T X I  9 NU) 
P R I N T  203 
DO 128 M t l r N U  
1 F ( K  1-M 

130 C l ( M ) = l o O  
CC(M)=O.O 

129 T 130 T 131 

GO T O  128 
129  C l ( M ) = X R ( M - l )  

CC ( M ) = X I  (M-1) 
GO TO 126 

131 C l ( M ) = X R ( M )  
C C ( M ) = X I ( M )  

128 C O N T I N U E  
DO 133 K t l t N U  

RETURN 
I33 BRXNT Z O S r K c C 1 ! K ) t C C ! K !  

203 FORMAT4 30HOTHE CORRESPONDING EIGENVECTOR//  1 
206 FORMAT ( 1 2 ~ 2 E 2 5 . 1 6  1 

END 

. 
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i 
I -  

I '  

I -  1 -  

, -  

D I M E N S  I O N  AR ( 3 9  3 

100 DO 101 J = l r N A  

DO 106 I = l r N A  
I F ( A B S F ( A R ( I  T J)  

9 AC( 39 3 9 A P  ( 39 3 )  9 AC p ( 3 T 3 r C  1 (4 TCC (4  I r CC p (4 T 
1cP (4) 9XR ( 4) 9x1 ( 4) 

K=O 

1 1 0 3 9  1029 103 
102 I F ( A B S F ( A C (  I T J)  I1039  106,103 
103 K = I  
106 C O N T I N U E  

104 DO 117 I S J T N A  
IF [ K - l )  130 t 1049104 

SAM=OoO 
suu=o.o 
I F  ( 1-31 107 9 1089 107 

DO 109 K = l r J N  
SAM=SAH+( AP ( I 9 K 1 *ACP 4 K T  J 1 +ACP( 1 9  K ) + A P (  K T J 1 )  

109 SUH=SUM+( AP ( I 9 K +AP ( K 9  J ) - A C P  ( 1 9  K +ACP(  K 9 J 1 1 
108 ACP ( I I J )=  AC 4 I 

A P ( I , J ) = A R ( I t J ) - S U M  
117 C O N T I N U E  

I F  ( N A - J  1 1 2 0 9  1259 113 

3.07 JN=J-l 

J ) -SAY 

113 I=J  
K K = J  

114 KK=KK+l  
SAHsO.0 
SUM=OoO 

105 I F ( 1 - I ) 1 1 0 ~ 1 1 1 ~ 1 1 0  
110 J M Z I - 1  

DO 112 K = l p J H  
S A H s S  AH+ I AP ( I 9 K 1 *ACP ( K 9 KK 1 +AC P ( 1 9  K 1 A P  ( K 9 KK 1 1 

112 SUM=SUM+( A P (  I 9 K ) * A P (  K * K K ) - A C P (  IT K )*ACP(  K ,KK 1 )  
1 11 DEN=( AP ( 1 9  I )+AP ( I 9 I )+ACP ( I 9 I )*ACP(  I t  I 1 1 

I F  ( D E N  115 9 120 9 115 
115 C W V R = A P ( I 9 I ) / D E N  

C O N I = - A C P ( I T I ) / D E N  
A P ( I 9 K K ) = ( C O N R + A R ( I 9 K K ) - C O N I * A C (  I 9 K K )  ) - (CONR*SUM-CONI+SAH)  

I F ( N A ~ K K ~ 1 2 0 ~ 1 0 1 ~ 1 1 4  
A C P (  I ,KK)=  ( C O N I * A R  ( 1 9  K K )  +CONR*AC( I 1 K K  1 I - (  CONR*SAM+CON I * S U M  1 

101 C O N T I N U E  
125 DO 116 I = l , N A  

SAH=OoO 
SUMsO.0 
IF ~ 1 ~ 1 ~ 1 1 8 9 1 1 9 9 1 2 0  

DO 121 K=l ,KK 
SUM=SUM+( AP ( 1 9  K )*CP ( K ) -ACP(  1, K )+CCP ( K 1 1 

12 1 SAM=SAM+( A P (  I ,K)+CCP ( K ) + A C P (  I ,K)*C P( K 1 1 
119 D E N = ( A P (  I, I ) * A P (  1.1 )+ACP( I TI ) * A C P (  I, I) 

If  (DEN) 1229 1209 122 
122 C O N R = A P ( I T I ) / D E N  

C O N I = - A C P ( I T I  ) / D E N  
C P (  I ) = ( C O N R + C l (  I 1-CONI*CC ( I 1 I - (  CONR*SUH-CON I + S A M  1 

116 C C P ( 1  ) = ( C O N I * C l ( I  )+CONR*CCf I ))-(CONI*SUM+CONR+SAM) 
XR ( N A  )=CP ( N A )  

118 K K = I - 1  

I -  
t + :  
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. 
ti 

X I  ( N A ) = C C P ( N A )  
NB =N A- 1 
DO 123 I2=lrNB 
I =N B- I 2+ 1 
SAM=O.O 
SUM=O.O 
I3=1+l 
DO 124 K = I 3 r N A  
SUM=SUM+( AP ( I, K ) * X R (  K ) - A C P (  I 

1 2 4  S A M = S A M + ( A P C I , K ) ~ X I ( K ) + A C P ( I , K ) * X R ( K ) )  
X R ( I ) = C P ( I ) - S U M  

123 X I ( I ) = C C P ( I ) - S A M  
R E T U R N  

130 P R I N T  200 
26i) FORMAT t 19HOCETER%INANT = ZERO! 

R E T U R N  
120 P R I N T  201 
201 FORMAT (6HOERROR 1 

K ) * X I (  K 

R E T U R N  
E N D  
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. 

In this Appendix we present a numerical example illustrating the  pro- 
Consider &rams described i n  Appendices A and B. 

where i n  the physical problem yn, (p , and are Laplace transforms of 
the following four degrees of fr<edaQl: 

Yo = rigid body translation 

9 = r i g i d  body pitch 

s1 = first fuel sloshing 

s2 = second fuel sloshing 

Let the polynomial elements of the matrix P be: 

= S + 7.U31409 x 

= 3.3673847 x 10'5S + 7.7574536 x 

'11 

p21 

P31 = S 

P41 = S 

PU = 1.3717434 x - 2.5805817 x 10% - 4.3492353 x Id- 
- 

= 5 f  + 1.8100787 S + 1.3966334 ?22 

= - 2.3408324 x ld-E? - 9.7847893 '32 

'42 = - 6.779C616 E? - 9.7847893 

= 6.3417457 x 10-2S2 p13 

- T r A h 7 7 - o  F23 - - J.V*Lf; l (dC x W 3 S 2  - 1.5232815 x 1n-3 

. 
h 
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4 

= S2 + 2.75 x + 7.5625 p33 

P43 = 0 

-2 2 P14 = 9.9826665 x 10 S 

P2* = - 1.6612538 x - 2.3978274 x 

234 = 0 

p44 = E? + 2.78 x lo-% + 7.7283998 

Program XCf301 requires the matrix whose elements are coerficients of 
,5? Without altering the spectrum of eigenvalues, it is 
possible t o  multiply the  first column of matrix P by S . This is essen- 
t i a l l y  equivalent to the  system 

t o  be nansingular. 

Now, applying this conditioning factor t o  the polynomial elements of the  matrix 
P given above, the input data for program Ma01 are: 

- - A 
(coefficients of $1 

1.0 1.3717434 x loe2 6.3417457 x 9.9826665 x 

3.3673847 x 1.0 -3.6441732 x -1.6612536 x loe3 

1.0 -2.3408324 x l& 1.0 0.0 

1.0 -6.779a516 0.0 1.0 
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a 1 

- B1 - 
(coefficients of S) 

7.1131409 x -2.5806817 x l$ 0.0 

7.7574536 x 1.8100787 0.0 

0.0 0.0 2.75 x 10-1 0.0 'I ' 0.0 0.0 0.0 2.78 x 10-v 

- - C 
(coefficients independent of S) 

0.0 -4.3452353 x lol 0.0 

0.0 1.3966334 -1.5232815 x 

0.0 -9.7847893 7.5625 

0.0 -9.7847893 0.0 

0.0 

-2.3976274 x 

0.0 

7.7283998 

I n  computing the corresponding eigenvectors i n  subprograms Ma08 
and M0309, t h e  original unconditioned data are used. 
of S2), B1 (coefficients of S )  and C (coefficients independent of S )  cor- 
respond, respectively, t o  matrices A, B1, and C given above with the exception 
tha t  the first column i n  each of the above matrices must be replaced as follows. 

Matrices Al (coefficients 

1.0 

and 
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Column 
C 

7,1131409 x 

7.7574536 x 

\ O o O  0.0 :"i 
Gtber i~p.x% vzl~as cezessesy frvr +,his example are NN = 4 , LZ = 1 , 

NSO = 5 and f ive values of SS = -0.6, -0.4, -0.2, 0.0, 0.2. 

The computed eigenvalues and corresponding eigenvectors based on 
Execution t i m e  of t h i s  program for t he  given these data are l i s ted  below. 

data on our 1620 IBM computer was approximately l5 min. 
cution time would be considerably reduced i f  me could use a faster computer 
with greater storage, e.g., an IBM 7090 or 360. 

iu'ote that  the exe- 

, 

? 
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a 

1 

THE EIGENVALUES 

-00313530386752723 

- 0  91074097920 13360 

-0 15 1015640529861 3 

-0358855 1179168403 

7908257742484470 

2 7 885 845 74 5 2 08 05 0 

3008269598 9206 98 50 

THE EIGENVALUE = -30135303887527230E-02 00 0000000O0000000E-99 

THE CORRESPONDING EIGENVECTOR 

1 ~1000000000000000E+O1 0 0000000000000000E-99 
2 - 0  56 7 8892 33 1866 050E-03 00000000000000000E-99 
3 03412808668328876E-02 0 0000000000000000E-99 
4 033 407 19024749410E-02 o0000000000000000E-99 

THE E I GENVALUE = -90 107409792013360E-0 1 7.908257742484470E-01 

THE CORRESPONDING EIGENVECTOR 

1 - 0  245 1688498 95 82 19E+02 
2 o1000000000000000E+Ol o0000000000000000E-99 
3 02 802946774896149E+00 - 0  7195803O54258117E+01 
4 -o6659367603751580€+00 -04074082319513876E+Ol 

-02049 16400377 1471 E+O 1 

THE EIGENVALUE = -1o510156405298613E-01 20788584574520805E+OO 

THE CORRESPONDING E IGENVECTOR 

1 02 532377948525678E-01 - 0  6408295748643520E-01 
2 -025 18910608894471E-02 257198141 4828410E-04 
3 -o9607198912245160E+OO 4623725262 9371 61 E+OO 
4 1000000000000000E+01 o0000000000000000E-99 

i 

I 
THE CORRESPONDING E IGENVECTOR 

1 - 0  5343 7788 982 94774E+00 
2 04876980626030941 E-02 o4230670695054194E-02 
3 0 1357835994917070E+01 17 86 7 102 02 0 1 5 8 87E+ 00 
4 o1000000000000000E+01 o0000000000000000E-99 

0 2 79990 106 7746 250 E+OO 
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